# DOE Bioenergy Technologies Office (BETO) 2023 Project Peer Review

Electrochemical Production of Formic Acid from Carbon Dioxide in Solid Electrolytes

April 7<sup>th</sup>, 2023
Carbon Dioxide Utilization

Dr. Feng Jiao



## **Project Overview**



CO<sub>2</sub> electrolysis can utilize waste CO<sub>2</sub> from bioreactors to produce market competitive formic acid at commercial scales.





## **Project Overview**

#### Conventional Design



Energy and cost intensive downstream separations

#### Solid Electrolyte Design



- Tunable formic acid concentration
- Elimination of downstream separations
- Not demonstrated beyond lab scale





## 1 – Approach – Task Overview

Phase I – 3 Months

Task 1:

Initial verification

Phase II – 18 Months

Phase III – 15 Months

**Task 2:** Electrode and membrane development



**Task 6:** Design and fabrication of 750 cm<sup>2</sup> electrochemical cell





**Task 4:** Catalyst and reactor scale up

**Task 5:** Preliminary techno-economic analysis and life-cycle assessment











# 1 – Approach – Go/No Go Objectives

| 0_ |                                   |                                                                      |                    |           |                      |                    |                |
|----|-----------------------------------|----------------------------------------------------------------------|--------------------|-----------|----------------------|--------------------|----------------|
|    | Validation Table                  | Instructions                                                         | Units              |           |                      |                    |                |
|    |                                   |                                                                      |                    | Benchmark | Initial Verification | Intermediate Targe | _              |
|    | Parameter/Performance             |                                                                      |                    | (Current) | (Go/No Go I Results) | (Go/No Go II)      | (Go/No Go III) |
|    | General Information               |                                                                      |                    |           |                      |                    |                |
|    | Current Density                   | The operation current for the generation of formic acid              | mA/cm <sup>2</sup> | 100       | 100                  | 200                | 200-300        |
|    | Faradaic Efficiency               | The selectivity of target product under benchmark current density    | %                  | >80       | 87                   | >90                | >90            |
|    | Cell Size                         | The size of electrolyzer                                             | cm <sup>2</sup>    | 5         | 6.25                 | >100               | >750           |
|    | Durability                        | Operation time for the long-term stability experiment                | h                  | 100       | 130                  | >200               | 1000           |
|    | Current Density for<br>Durability | The operation current density for the long-term stability experiment | mA/cm <sup>2</sup> | 30        | 30                   | >100               | 200            |
|    | Production Rate                   | Mole generation rate of liquid formic acid per hour                  | mM/h               | 2         | 6.3                  | N/A                | N/A            |





## 1 – Approach – Project Structure







## 1 – Approach - Major Technical Challenges

#### Scale-up of solid-state interlayer



Lack of methods to fabricate large-scale interlayers while keeping uniform wetting, consistency, and pressure drop.

#### Stability of the full cell



A stable operation for formic acid production has never been demonstrated in any CO<sub>2</sub> electrolyzers larger than 100 cm<sup>2</sup>.





## 1 – Approach – Risk Mitigation

The team is tackling the technical challenges by exploring a variety of approaches.

| Risks                                                                                                                 | Mitigation                                                                                                        |  |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|
| Scaling up current generation solid-state interlayer materials could be challenging due to its powder nature.         | Alternative solid electrolyte layer materials are being investigated.                                             |  |
| Current electrolyzer design may experience a significant loss of formic acid Faradaic efficiency at large cell sizes. | Several different electrolyzer cell designs have been studied.                                                    |  |
| Difficult to probe the falling mechanism at the full cell level.                                                      | A 5-electrode full cell diagnostic tool has been developed to probe the major voltage losses in the electrolyzer. |  |





### 2 - Progress and Outcomes - Catalyst Testing and Effects of Doping











Milestone 2.1.1: Complete the identification of cathode catalysts that meet the performance target 90% FE and 200 mA/cm<sup>2</sup> [completed]



#### 2 – Progress and Outcomes – Binder Material Evaluation



Milestone 2.2.1: Complete the selection of membrane and binder materials that can achieve at least 90% FE and 200 mA/cm<sup>2</sup>. [completed]





## 2 – Progress and Outcomes – Catalyst Scale-up Routes



Synthesis Route 2: Hydrothermal





Bi nanosheet



### 2 – Progress and Outcomes – Redesigning the Solid Electrolyte Interlayer

Task 3.0: Development and execution of durability protocols

#### **Textured Membrane:**



#### Confined Resin Composite:







#### 2 – Progress and Outcomes – Redesigning the Solid Electrolyte Interlayer

#### **Ionomer Coated Scaffold**





Recovery of FE from 45% to >80% through doubling cathode gas flow rate





## 2 – Progress and Outcomes – Scaling-up Fabrication of Electrodes

Subtask 4.2: 100-250 cm<sup>2</sup> reactor fabrication and evaluation



Automated spray deposition of catalyst ink



Automated rod-coating as a pilot to roll-to-roll electrode fabrication



IrO<sub>2</sub> anode interfaced with Nafion membrane, 25 cm<sup>2</sup>





#### 2 – Progress and Outcomes – Electrochemical Measurements at 100 cm<sup>2</sup>

Subtask 4.2: 100-250 cm<sup>2</sup> reactor fabrication and evaluation





- Formic acid Faradaic efficiency >90%
- Anion exchange membrane (AEM) ruptured after 14 hours of operation. Alternative membrane materials will be tested.





### 2 – Progress and Outcomes - TEA





Expected 33% cost reduction of formic acid compared to conventional fossil fuel route

**Electrolyzer Configuration** 

Milestone 5.1.1: Complete the preliminary techno-economic analysis including models of capital and operation costs, and sensitivity analysis. [completed]





## 2 – Progress and Outcomes - TEA



Milestone 5.1.1: Complete the preliminary techno-economic analysis including models of capital and operation costs, and sensitivity analysis. [completed]



Faradaic Efficiency



## 3 - Impact - Potential Market Effected

#### Formic Acid Markets, 2018



In addition to creating a foundation for a hydrogen economy, our cheaper green formic acid will contribute to decreasing CO<sub>2</sub> emissions in multiple sectors





## 3 – Impact - Evaluation of Hydrogen Carriers (Case Study)



Crandall, B. S. Brix, T., Weber, R. S., Jiao, F. Energy Fuels, (2023) **37**, 2, 1441-1450





Formic acid is an economical green hydrogen carrier.





## 3 – Impact – Development of *Operando* Diagnostics



Development of novel *operando* diagnostic tool for overpotential breakdown in electrolyzers. The new tool has a high potential to be used at the industrial level.

Hansen, K. U., Cherniack, L. H, Jiao, F. ACS Energy Lett. (2022) 7, 12, 4504-4511





## 3 – Impact - Evaluation of Hydrogen Carriers



- Identification and improvement of major energetic losses in CO<sub>2</sub> electrolyzers
- Development of hot-pressing technique for catalyst coating anion exchange membranes



## **Summary**

Our novel solid electrolyte  $CO_2$  electrolyzer can produce clean, market competitive formic acid without additional downstream separations. The goal of this project is to scale electrochemical formic acid production from biowaste  $CO_2$  to an industrially relevant size.





We have completed our task of electrolyzer component selection, catalyst scale-up, and preliminary TEA results. Our project currently remains on schedule as all teams have now moved on to stability testing and 100 cm<sup>2</sup> electrolyzer fabrication and evaluation as specified in SOPO.

Through cooperation with our industry partner, we have developed a technoeconomic model to prove that electrochemical formic acid has high potential to be an economical hydrogen carrier. Thus, we expect a successful outcome of this project to greatly decrease  $CO_2$  emissions.





#### **Quad Chart Overview**

#### **Timeline**

Start: 10/01/2021End: 9/30/2024

|                            | FY22<br>Costed              | Total Award                         |
|----------------------------|-----------------------------|-------------------------------------|
| DOE<br>Funding             | (10/01/2021 –<br>9/30/2022) | (negotiated total<br>federal share) |
| Project<br>Cost<br>Share * |                             |                                     |

TRL at Project Start: TRL-3
TRL at Project End: TRL-5

#### **Project Goal**

The goal of this project is to develop an industrially relevant  $CO_2$  electrolyzer to produce clean formic acid from waste bioreactor streams at a market competitive price.

#### **End of Project Milestone**

Demonstrate formic acid production at a Faradaic efficiency of >90%, current density of >200 mA/cm², 1000 hours durability at 200 mA/cm² in a continuous electrolysis or in a noncontinuous electrolysis with interval system regeneration., cell size of >750 cm²

#### **Funding Mechanism**

DE-FOA-0002203, DE-EE0009287.0001, Carbon Dioxide Utilization, 2020

#### **Project Partners**

- Haotian Wang (Rice University)
- Kenneth Neyerlin (NREL)
- Todd Brix (OCO Chem)





# **Additional Slides**





# **TEA Major Assumptions**

| Parameter                                           | Value                              | Reference                                                                                                            |
|-----------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Bioethanol CO <sub>2</sub> Cost                     | \$30/kg                            | Sanchez, D. L. et al. PNAS. 19, 4875-4880 (2018).                                                                    |
| Electricity Cost                                    | \$0.05/kWh                         | "Renewable power generation costs in 2021" IRENA (2022).                                                             |
| Electrolyzer Lifetime                               | 20 years                           | Shin, H. et al. Nat. Sustain. (2021).                                                                                |
| Electrolyzer Reference Cost                         | \$450/kW                           | Peterson, D. et al. Hydrogen production cost from PEM electrolysis. (2020).                                          |
| Electrolyzer Maintenance                            | 2.5% of Electrolyzer CAPEX         | Peterson, D. et al. Hydrogen production cost from PEM electrolysis. (2020).                                          |
| Electrolyzer Major Component Replacement Cost       | 15% of Electrolyzer CAPEX          | Peterson, D. et al. Hydrogen production cost from PEM electrolysis. (2020).                                          |
| Ir Cost                                             | \$26.91/g                          | "Historical Iridium Price" Mining.com [pre-covid 5-year average].                                                    |
| Labor Cost                                          | \$4000/day                         | DOE "Current Central Hydrogen Production from Polymer Electrolyte Membrane (PEM) Electrolysis (2019) version 3.2018" |
| General & Administrative Cost                       | 20% of Labor Cost                  | DOE "Current Central Hydrogen Production from Polymer Electrolyte Membrane (PEM) Electrolysis (2019) version 3.2018" |
| Balance of Plant CAPEX                              | 35% of Total CAPEX                 | Peterson, D. et al. Hydrogen production cost from PEM electrolysis. (2020).                                          |
| Catalyst Cost                                       | 50% of Electrolyzer Reference Cost | Peterson, D. et al. Hydrogen production cost from PEM electrolysis. (2020).                                          |
| Electrolyte Regeneration & Formate Protonation Cost | \$0.24/kg formate                  | Overa, S. et al. Nat. Catal. (2022).                                                                                 |
|                                                     |                                    |                                                                                                                      |



# **Electrochemical Reactions**

| Cathode Products                               | Anode Products                                  |  |
|------------------------------------------------|-------------------------------------------------|--|
| Formate                                        | Oxygen                                          |  |
| $CO_2 + H_2O + 2e^- \rightarrow HCOO^- + OH^-$ | $40H^{-} \rightarrow 2O_{2} + 2H_{2}O + 4e^{-}$ |  |
|                                                | (Alkaline)                                      |  |
| Carbon Monoxide                                | Oxygen                                          |  |
| $CO_2 + H_2O + 2e^- \rightarrow CO + 2OH^-$    | $2H_2O \rightarrow 4H^+ + O_2 + 4e^-$           |  |
|                                                | (Acidic)                                        |  |
| Hydrogen                                       | Formate Oxidation                               |  |
| $2H_2O + 2e^- \rightarrow H_2 + 2OH^-$         | $HCOO^- + OH^- \rightarrow CO_2 + H_2O + 2e^-$  |  |
|                                                |                                                 |  |



# Publications, Patents, Presentations, Awards, and Commercialization

#### **Funded Publications:**

- Crandall, B. S. Brix, T., Weber, R. S., Jiao, F. Energy Fuels, (2023) 37, 2, 1441-1450
- Hansen, K. U., Cherniack, L. H, Jiao, F. ACS Energy Lett.
   (2022) 7, 12, 4504-4511



